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ABSTRACT

A system has one vital component for which there

I are n spares. Whenever 1 failures of the vital
component fails, the system fails. We are con-

! cerned with calculation and properties of the

schedule of component replacements which maximizes

the expected life of the system. Most of the paper

deals with the case of i =1,
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_'jf ON THE USE OF REPLACEMENTS TO EXTEND SYSTEM LIFE ::

R C. Derman, Columbia University )

8 G. J. Lieberman, Stanford University -

) S. M. Ross, University of California, Berkeley .‘-_‘:

I =

B o
1. 1Introduction i

-_'- The literature dealing with the scheduling of replacements and/or

M inspections is very extensive. See [2] for a comprehensive set of

> ot =
eferences. .

» r-{rthtrwr~-m are concerned with the following question. A system 1

N o

-1 has one vital component for which there are n spares. Whenever the "l

°y /~€ &.,,f,'-ﬂ'; -A:‘1

. vital component fails, the system fails. W& would like to schedule the 1

R :

: ' replacement of the vital component with the spares so as to prolong the :'1‘1

2 life of the system as much as possible. This problem can be generalized 233

- "
to where there are several components in the system and the scheduling of o

y They q

o replacements refers to each of the components. W€ deal mainly with the .

, first question but treat, to some extent, a special case of the second.

, - -In the next to final section we considetslc generalization which allows for

:3 the vital component to fail a fixed number of times before causing the

3

2 system to fail. (T
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2. One Vital Component Problem

Assume a one component system. Let F, with F= 1-F, denote the

life distribution of the component. We assume that its mean,

p=f F(t)dt <= ,
0

and that F has a continuous density f with support (0,T), 0K T < =,

g
=
_i
j

and we let

r(t) = £(t)/F(t)

denote its failure rate function.
Suppose the system is put into operation at t = 0, using an initial

component. There are n statistically identical spares that can be used

sequentially as replacements. The system fails whenever the component
that is currently in use fails. The idea is to judiciously replace the S:
component in use with an available spare in order to extend the life of
the system. We assume that once a component has been removed it cannot be
used again. Let S denote a replacement schedule, L the life of the
system, and ESL the expected life of the system as a function of S.

The problem of concern, here, is to determine the schedule S, and (or)
some of its properties, that maximizes E_L.

S
As will be evident there always exists an optimal schedule, although

it may not be unique. Let v denote the expected life of the system

given an optimal schedule of replacement of n spares. If n = 0, there

is only one schedule; viz, the one that never replaces. Therefore,
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.................
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. ) If n>1, \A satisfies the optimality equation

;:: ‘ 1 v = max ¢ (x

1) a " oy %

x vhere

x _

X 2) ¢ (x) = [ tf(e)de + F(x)(x +v__.)

- n 0 n-1

: x _ -
3 = [ F(t)dt + F(x) v .

ro n-1

3 0

¥

Since, by assumption, § < °,On(x) is continuous at all x ¢ [O0,T].
‘ Thus, ¢n(x) can always be maximized, although not necessarily uniquely, j:j
:: at x = x (say). The value, X is, in words, the optimal length of j:3~
~ ;
' time to use a component before replacing it when n spares are i
. available. 1If xn = T, then the component is never replaced and v, " Be .
N If x " 0, a component is immediately replaced, in which case Vo ® Va1t 1
It should be kept in mind that the system may fail before all n spaces Bt

5 are used even though a schedule is optimal. q;
%‘,; f.::
Q Proposition 1: v is nondecreasing in n. X
3 -
:: Proof: vn > ¢n(0) =V n> 1. :::.:
- - 1
2 Proposition 2: If v, = v , then v =v, , n> 1, o
- 1 0 n 0 = s
i -
Proof: From (1) and (2) we obtain, for n > 2, -

e l®

oo e e Te T e L Y e T e e \*
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IS 3 Ya " Va-1 T 0n(xn) - ¢n-1(xn—1)
! <o (x) =0 (x)

_

5 - B0 )

X

::' Since v _, - v _, > 0, by Proposition 1l and 0 < F(x ) <1, the

é proposition follows.

'_ Since ¢1(0) = ¢1(T) = u, and from (1) and (2), it follows that

: V1=V if and only if

¥ x _ -

ad () p> [ F(edae + F(xw , 0<x<T ,

. 0

A

%

W2 or, equivalently, if and only if,

® F(r)d

. p< S _éil_i 0<x<T . ‘
N x F(x) 3
o The above condition is often called the new worse than used in expectation ;i
3 (NWUE) for it states that the expected additional life of a used vital X
N -
:: component of age x 1s at least as large as the expected life of a new X
<4

N

one.

- By considering the derivative of the right side of (4) we can see

R

: that 1f £(0) = r(0) < %, then v, > vj. On the other hand if F is

*J

e NWUE then x, can equal T and vy = Vo We shall assume for the

remainder, unless stated otherwise, that F 18 not NWUE and so vy > Vo* .
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Proposition 3: \A > Vo-1' Vo~ Va-1 < vn-l T Va-2! and

0<x <x <T, n> 2.
n—="mn -

-1

Proof: Since At > Vor Xy #0 or T. 1In a manner similar to

showing (3) we have

(5) Vo T Va-1 Z_F(xn_l)(vn_1 - vn_z) , n>2 .

If x =T for some n, then v = u=v
n n 0

proposition 1 in view of the hypothesis that vy > Vo Therefore, X T

for all n > 1, and, hence, f(xn) > 0. Thus, it follows inductively from

which is contrary to

(5) that v > v ,n>1l., If x =0 for some n > 1l, then v =
n n- = n - n

1 Vn-1°

a contradiction of what has just been shown. Thus, X, > 0, ?(xﬂ) <1,

n > 1l. From (3) and the positivity of LA A it follows that
vn -v“_1 < vn_1 - vn_z, n > 2. Fipally, from (3) and (5) and what has
Just been shown, we have

F(xn) Z_F(xn_l) » n>2 ,

from vhich xn <x n>2 .

n-1’
As previously remarked, x need not be unique. However, let {xn}
denote the set of values for which the maximum of Qn is obtained. The

proof of Proposition 3 shows the following

Corollary: max {xn} < min {xn_l}, n> 2.

A, )

;
“
2
o

3
%

LI S

S 0 ]e



i

< -,,.‘v_) .é {L

P
»
- b

LA
AR ARSI

0 ha
.
2,

A <
TREE e v B IS

4 -1
I,
.

et PR i
N 1Y VI L
[V R RV P R

KA
»

RN l"l:'n
R LN AR

.-

%"

Proposition 4: x satisfies

1
r(xn).‘—’— ’ nz_l ’
n-1

and r cannot be decreasing at X

Proof: From proposition 3, xn is an interior point of the interval

[0,T}. On differentiating on we get

o1(x) = F(x) - £(x) v, _,

= F(x)(1 - ®(x) v__)) -

Thus, O;(x) = 0 only if r(x) = 1/vn_1. However, if r(x) = and x
n-1

is a point of decrease of r, then O; is increasing at x so that x

cannot be a relative maximum.

Corollary: x < X100 > 1.

Proof: Proposition 3 asserts that v >v and allows the

n-1 n-2

possibility that X, "X However,

n-1°

vn—l ) r(xn)

- r(xn_1

is impossible.
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The second derivative of 0; is

Oa(x) = -f(x) - £'(x) Voo

Thus, if x 1is a root of r(x) = vl and f'(x) > 0, then x 1s a
relative maximum of Qn.

If F 4is IFR, then X is the unique root of r(x) = l/vn_l.
Because in this case, f(0) = r(0) < 1/p. In fact, from Proposition 3,
£(0) = r(0) < l/vn, n>l.

If r 1is unimodal and has two roots to r(x) = llvn_l, then X is

the smaller of the roots; if r has the so called "bathtub” shape, then

x is the larger of the two roots.

Proposition 5: 1lim Vo=V is finite or infinite according as f£(0)

n*e

is positive or zero. Although L is not necessarily unique,

lim x = x* > 0, 1s a unique value.
n+ 1 =

Proof: If vy = Yoo then v, ¥, n > 1, by Proposition 2. Suppose,

for the remainder of the proof, that Vi ~ Vo > 0. Since, by Proposition

1 > v. then 1lim v exists and is either finite or infinite. By
1= "'n n+e N

Yo+
Proposition 3 and the corollary following it, it is easily shown that
1im X exists and equals a unique non-negative value x* (say). Suppose
n»>e
£(0) = r(0) > 0, x* = 0, limv_= «, For € > O, choose 6> 0

nd» N
sufficiently small so that r(x) > € 1if x < 6. If 2 > 1/¢, then

1/v < g “#n > vhich implies that x> 6 ¥ n > N, a contradiction

e e Lt e
o .o S
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that x* = 0. Thus, under these circumstances lim vn = o {g

o impossible. Suppose £(0) = r(0) > O, x* > 0. From Proposition 2 .

> Va ~ Vn-1 SFx )V = Vo) .
< F(x*)(v 1 vn-2)
Pl (xk ) (v, = vy) > 2
x 1= V) » n2 .
Thus
i } —n-1 )
= Monvy, =W & nZZ FooGe)(vy = vg)
F(x*)

" Fo) (1T vo?

(= .

Suppose, now, that £(0) = 0. Consider the schedule S having equal

s replacement intervals of length y with n, = [f%§SJ equal to the
N
{g number of available components, including the initial one. Let L denote
Y bl
the life of the system under Sn . Then it {s easy to show that ii
B y .
N lip E(L) = = . »
. y-)O
[
Since v > E(L) and v increases in n 1t follows that 1lim v = =,
ny n n* 0
If r(0) > 1/4, then x* > 0. For it is trivially true if x, = T;
and 1if Xy < T, then ®
e
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r(x*) = %i: r(xn)

ne+® n-1
= 1/v

< 1/vo
= 1/u . :
The following is a sufficient condition for x* to equal O. f
i
Proposition 6: If F 1s a strictly new better than used (NBU(S)) ??
distribution in the sense that ]

FCe%) ¢ F(r), forall x>0 , >0 ,
F(x)

then x* = 0.
Proof: Suppose F 1s NBU(S) and x* > O. For each n let Sn be

the schedule (xn/Z’ xn/Z’ xn—2' ceey xl); i.e., the first two replacement

intervals of Sn are of length xn/2 and optimal thereafter. Let

I

En(t) = F(t) , t<x

- i(xn/Z)i(:—xnlz) y E>X g,

Note that

Gn(t) DF(t) , t> X /2

Let Va - Esn(L). We have

j
£
o
:ﬁ
*

- Lt et e
R .
O o

. Lalela 4 'a
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X
~ - n -
v g G (t)dt + G (x v _, .

"!l 4_‘J"A."..' -

Denoting G=1im G and letting n + =, we have
neo 0

x*

Hmv_-ve= ] (6(t) - F(t))dt + (C(x*) - F(x*))v
n+= 1 0

RORTOR. _ W S

> 0 ’

R 1

a contradiction that 1lim v < v.
n»x N~

Remark: The condition that F is NBU(S) is weaker than that F is

strictly IFR, i.e., that r(t) 1is strictly increasing.

)
N

Examples:

(i) Uniform (O0,1). Here,

f(t) =1
F(t) = ¢ , for 0<t <1 ,
r(t) = 1/1-¢

Vo= B " 1/2 , v, " 5/8 .

Since, £(0) > 1, v { =, From Proposition 4

g

xn =1- vn-l

and

' [ S S ]
. s e
4 Db it




®
s dartatst

T T ———

(1-v__,)?
Va * 2 + vn—l((1 ~ Va 1) + vn-l)

2

(-vgey) + v

2 n-1
=120 4vE) , n>1 .
n-1 ? =~
Some values of x and Vo will appear in Table 1. Since F 1is

NBU(S) we see that x* = 0 and v = ;T%T =1,

(ii) Linear (0,1); specifically,

f(t) = 2t

F(t) = t2 , for 0<t <1

r(t) = ZL

1-t2

v, = u= 2/3 ,

Since, £f(0) = 0, v= @ x* = 0 and

r(xn) =
- l/vn-l ’
leading to the quadratic equation

2
x + 2vn_1 x, - 1=0 ,

for which the only positive root is

L N
\

e P

......... Pl

v'Lf" '. N

P
(]

y o)

v
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2 ‘
x = “Va-1 + 1+vn_1 .

Thus,

Xn 2 2 )
v =2 [Tefde+ (- x Mx +v_))

n 0 n-=

S EER .

3 2
- 2/3 X + (1 - xn)(xn + vn-l) .

The values of X and v, can be computed recursively, commencing

with Vo " 2/3.

(111) £(t)

[ ]
N
”~~
[

!
(a3
~

F(t) , for 0< ¢t <1

2t -t
2
r(t) = 1—_-{

[
Mamsa e s RS LA S MR

v, = u=1/3 .,

Here, £(0) = 2; hence v < ». F 1s IFR with r(0) < = ; thus

€ |-

2
r(x) = T:;;

3
"
]
.‘4

- llvn

-1 , .

iteo’

x, " 1- 2vn_1 . -

Also,

2 2
v, = x (1 2/3 x )+ (x - Dx +v ) .

-12-
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The values of x and vn can be calculated recursively. To find v, it

e &.“ i
_l‘l" .
DR s’
'
b e ate s 'u![“' " l':

is easier to express v 1in terms of x* and solve for x* 1in the latter

. .
.

equation after having let n + =, Out of this procedure comes the

L4

LA AN
(7 I R S S &
.

equation

x*2(1/2 - x*/3) =0

from which
x* = 0
is the only acceptable solution. Thus,
ve=1/2 .,

(iv) Two exponentials in parallel.

Let

t -
£(t) = 2¢ (1-e )
-t 2
F(t) = 1-e ), 0<t <o
£(t) = 2e 1-:
1-(1-e" )2
Vo " b= 3/2 .

This case arises when the component comprising the system is a module

consisting of two independent components, each component having an

(o]

(a4
< .’ et ’;‘. VoL ", .'. ." . e :'.. _>. IR B ..."-:..'., ‘. o
PRI SN RION SR P L B a2 a’a _-__.I__.L.u. .L-.Jv..';_iAL‘".l A AT

exponential distribution with mean one.

§ Yo
e e e e oA
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Since £(0) = 0, lim v, "= The equation for obtaining x in ;;;
terms of v is S
n-1 .
"J
-*n x QE
2e n .
r(x ) = (1-e M)
1-(1-e~ )2
= llvn__1 .
Solving explicitly yields
X = 108 _.M.
n Z(Vn_l-l)

Substituting this, in (2) ylelds, after some algebra,

2
2(v_ ,-1)
- n-1 , V. =3/2 ., -
va 3/2 + v 1 0
n-1

Numerical values for X and v, appear in Table 2. f'
T
Since F 1s strictly IFR and thus NBU(S), x* = 0 and i
vsas1l/r(0) = =, ..j.:,.,‘
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3. Equal Interval Replacement Schedules

In this section we restrict the class of schedules to those having
replacement intervals of equal length. Let ¢h(y) denote the expected

life of the system when y 1s the length of the interval. Let

L m;x ¢n(y) .

Let Yo denote a value of y such that
b =4y .

It is seen from (7) below that such a value exists and is positive.
Notation from Sections 1 and 2 will be continued.

First, we note the recursive relation
¢ (y) = ,( tE(E) + FCy)(y + ¢ _ (4N
0
- [ Forae + Fp) ¢ . y<o .
0

Also, by considering the difference between having n and n-1

spares, we have

=n-1 y v R

(6) G = 4y () = PO eee)de + ey +w - ) =]
=n-1 Y - ;%

- F d(y){(f) F(t)dt - F(y)u} !‘

- E“‘l(y){ol<y) -u} . J

BN

®

=15~ ’:




On summing (6) we get
€D $b(y) = (y) = 4 (y) - p

y _ =t
= (] Ee)de - R (L
0 y

1-F(y)
= () - W)=

Proposition 7: If v, > Vo> then ¢n > ¢h—1 , n2> 1l

vEvym then ¢h = v for n > 1.
Proof: From (7),

by~ B2 4 (x) - @

1-5“(::1)
= ———F(x1> (v1 - W

>0 .
That 1is, dh(yn) > 4, n 2> 1, which from (7) implies

6y 248 , o2l .

Thus, from (6)
n''n-

L 2 ¢ (y 1) - ¢n_1(yn_1)

=n-1
=F (0 (y ) - W

>0 .

If




Suppose v1 = p, The above argument shows that ¢n 2 #. However, since
\A 2-¢n and v, "k n > 1, by proposition 2, it follows that
¢n =y, n> 1.,
. A reasonable conjecture is that for any set of maximizing values
(yn), Y4y < Tq» B 2 1. We prove that this is, in fact, true.
First we need a well-known tool which will also be used in the next

section. Let g(Bi,y), i =0, 1, be functions defined over a subset A

of the real numbers. Assume g(ei,y) have maximums Yo in A; i.e.,
i

Lemma: If for every y',y" € A,y" > y', we have

(8) g(el.y") - g(el,y') £ s(eo.y") - g(eo,y')

then y, <y, . :'.;:

- 3
Proof: We have, by definition, 'f

8(91)Y) - g(eiyy61) S 0 , vyeA , 1i=0,1.

éﬁ Suppose y > Yo+ ¥ € A. Then, by hypothesis, with y = y", Yo = y',

N 0 0

" _ ) |
- 8(0,,y) - 8(8,,¥y ) < &8(8,,y) - (8,7, ) ®
3 0 0 §
: <o, s

i.e.

N 4
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Therefore, y kb <y, .
N L T
We now show

Proposition 8: Yotl < Y B 2 L.

.~

'::Ef Proof: Let 91 =n+ i, {1 =0, 1, so that in the lemma

l\.

";5 808,90 = Log (o, - w LB Q)

e 1° 1 F(y)

- -+t

- = log (4;(y) - ¥) = log F(y) + log (1 = F  (y)) ,

= 1=0,1 . .

- Let A be the set of y for which ¢1(y) - p> 0. Since, throughout, we ‘

.‘ are assuming v, > Vo A 1is non-empty and, by (7) and Proposition 7, con-

L3

::3 tains Yobi® i =0, 1. However, for every y" > y'(y', y" € A) we have

__J

"J

7. -n+i .

.." " 1_ . ‘j

8(0,y") - 8(8,y') = log ) 1.0, 1 . :

i 1-F (y') -

™ For (8) to hold it is sufficient that i

1771 (g™ 1-FG™) . ]

- log —-JL_RH £ log — y Y Y 2y, 1

. 1-F (y") 1-F (y") -

: or equivalently, -

~ R

o ' i

"

- -18- 1
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1-F G 1F )

1-Fy") T 1-FR(yM)

’ Vy")y' *

This inequality will hold if

is non-increasing in y, or if

1_zn+1

1-z°

is increasing in Z for 0< Z < 1. However, for n > 1,

l_zn+1 r):x K ngl zk

1-2

which 1s increasing in Z.
By Proposition 8 %ﬁ: {yn} exists. We denote this limit by y*.
The expression ¢i(y) - § represents the difference in the expected
life if one spare is available compared to having none available when the

replacement is made at time y. In our notation, y = x is the optimal

1
’ time to make such a replacement. We have as a result of Proposition 8 a

Corollary: ¢l(yn) - p is non-increasing in n.

-

=19~

=




Proof: Suppose for some n 2> 1 that

0V ) — B> 0 )) e

However, by Proposition 8, Yotl < Yo Since the other factor in (7) is g
decreasing in y, it would then follow that 5
)
4

by ) 824y,

a contradiction.
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k 4. Relationship Between Optimal and Optimal Equal Interval Schedules
: Proposition 9: lim ¢ = lim v
) n*+ N0 nr»e n
=V M

Proof: Consider the case of x* > 0. From (1) and (2) and

Proposition 5 on letting n + «, we have

x*
v s f F(t)dt + f(x*)v .
0

i.e.,

v = j"* F(t)dt
0 F(x*) °

However, from (7)

2
a’a

- x
1 -
Ln ¢.(x) - = 5755 {é F(t)dt - F(x)u}, + x .
é: Thus, in particular,
lim ¢ > lim ¢ (x*) -j:
n+ N — na N
x* E:
= [ F(t)dt/F(x*) " 3
: .
=V . 'g
On the other hand, since v > ¢, e

%ig ¢y v .

. A P P L S o . - . .
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:t :. -t SN . < - D e T
N
oy Now suppose x* = 0. We have by (7) that

: a4, 2 [ Foare v x>0
ﬁi hence,
x -
lim ¢_> lim | F(t)dt/F
3 n»¢n—x+o£ (£)dt/F(x)
N; = 1/£(0) .
;35 1f %E& V.S then, by Proposition 5, £(0) = 0. Thus, %12 ¢n = », If
_}f lim A < =, by Proposition 4,
B nr>o

= 1/v = 1lim 1/v

Aol n+= n-1
. = 1im r(xn)
o n+e

N bd r(O)
- £(0) .

Thus,

lim ¢ > v .

- nde BT
s
3: Since %ﬁt ¢h < v, "V the equality follows again.

- Let

e e e

Wy) = lm ¢ (y)
n-+>o

- y =
_:,. - I FStZdt , >0 , 1
o F

I;j:

Dy -22-

.




and

o o(y) = lim ¢ (y)
. n-PQ

TR YRR, SRR I

- y _ )
= [ F(t)de + F(y)v , y>0 .
N 0
-“.
N
-

Since cbn(y) *+ «y), y >0, and ¢ (y) and d(y) are continuous,
then
= ¢(y*) = max ¢(y)
\d y>0
R -y |
N if y* > 0. If v < «, we have, for the same reasons, that
i o(x*) = max 6(y)
p y20
i -v ,
- implying that
=
! * -
e X F(e)de _

* L]
. o F(x*)
5 By applying the lemma of Section 3, with :"::
8(8ys ¥) = log (¥ (¥) = w) =3

and
: |
= 8(8;, y) = log (y) = ) , L
* 2
. in the same manner as in the proof of Proposition 8 we can show that if 11
:f y** > 0 and d¢(y**) = mgg ¢(y), then y** ¢ A and \i
% y -
K -
.
- -23- 3
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Similarly, by letting

<
»
A
S
L]
BRI . - :.;.... . ‘.,‘.'

L

g( Go.y) - ¢n(y)

D
PP

and

86,1 = o(y)

if v< = and x** > 0 4s such that

x** = max @( .
d(x**) 755 y)
then
x** < X, » ¥n

implying

Xk xho,

Consequently, we can prove

Proposition 10: x* = y*

Proof: If x* > O, y* > 0, then by the preceding statements x* and

y* are each the largest values that maximize d(y) over (O0,«). Thus,

x* = y*, We need only show that x* and y* are positive or zero
together. Suppose x* > O. Then let y** = x* in the remarks preceding

Proposition 10 implying y* > y** = x* > 0. Suppose y* > O. Then

1/£(0) < Ky*) <= .

-24-
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_ 1f o
¥ Wy*) > 1/£(0) ]
a0 -3
{ ®
then x* > 0 sgince, by Proposition 4, x* = 0 implies v = 1/£(0). 1If e
b Ky*) = 1/£(0) ;
o,

- then v = 1/£(0). However x* 1is the largest value such that 5
.. -

3? Wx*k) = ?Sﬁ o(y)

4

-4

= 1/£(0) .

g' Therefore x* > y* > 0. ~€

- Example: 4

% Uniform (0,1). ;
n

-3+ EGR®

y -, A+ a-a-ypha-nt .

...
»
P

Thus, Ya is that value of y that maximizes

y
PRl

n
Q-aa-aQa-yy .
Letting 2 = 1 - y, we see that

1 \1/n
r zn-l-yn-(-nTl-)

or

) ~25-

T . - .t N LT T PO . - N "
N R et s B e Y
N TP L .. L T, T O T B T e



and

1 1 1 . 1/n
b, -5{1 + (1 -m)(m) } .

o ..
‘A .

el

SRS

We can see directly, or using Proposition 9,

lim ¢ = lim v
ns*e n nso

= 1 L]

Values of ¢h and Y, are tabulated in Table 1.
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5. The Expected Number of Spares Used

While there may be n spares available to extend the life of the
system, because of possible failure of the system before all spares are
used, the actual number used is a random variable depending on F and the
schedule.

Let S = {Zn, A ooy 20, T} denote the schedule. Let u

n-1’

denote the expected number of spares used. Then, u satisfies the

recursive relationship

(9 u =F@Z)l+u ) , n)>l

n-

u0 =0 .

In case S 1is the equal interval schedule with interval length vy,

then
(10) u = F(y) + F(yw__,
n -
= 7
k=1
_ -
F(y) ?

which can also be obtained from the geometric distribution.

Examples
(a) Uniform (0,1)

If the optimal schedule is used then (9) yields

-27-

o)

4
o)
.
. .4

¥
—

b DS D o ) '
R . Y
L bt bt ol ol o

e




MR AR

™, w T hd e TR T T e T . v - W, -
T T A TR - A N A AN N A S

u = (1 - xn) + (1 - xn) u_1

" Va1t tuy)

If the optimal fixed interval schedule is used, then (10) yields

nt+l

1 .1/n l,n
(n+1) - (n+1)
Up * 1/n
(1-1/n+l)

() (- ()
1/n

1-(1/n+1)

(<Lo)l/e 2
ml ml .

1-(1/n+1)1/®

These values will be tabulated in Table 1.

(b) Two exponentials in parallel.

In this case, the formula (9) for the optimal schedule yields,

u = (1= (v - n~Ha + u ) Y,

These values will be tabulated in Table 2. We shall be especially
interested in comparing these values with expected number of components

used in the situations described in Sections 6 and 7.

-28-
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6. Systems With More Than One Replaceable Component

I

In the previous sections it was assumed that when a replacement was

and, because of its exponential character, is as good as a new component.

4

‘ scheduled, the entire system was replaced. However, example (b) arose in ii
the context of the system consisting of a two independent component 'E

module, each component having the same exponential life distribution. ;g

This suggests that efficiencies can be gained by exploiting the structure o,

of the system and the individual life distributions of the components. é

We concentrate, here, on the specific structure of example (b) and i

consider schedules that call for the replacement of individual ;d

components. A number, n, of spare components (as distinguished from spare E

systems) are on hand. The objective 1is, still, to attempt to maximize the ';

expected life of the system. ia

To put the problem in a general context, a working system can be .

. thought of as being in state (s,t), meaning that s time units have :{
elapsed since it was known, either by replacement or deduction, that ia

component 1 was in working order. The same meaning is given to t for ;;

component 2. The deduction that component 1 is working is made when the ié

inspection (which we assume takes place) of component 2 after it is s |

replaced reveals that it has failed, implying that component 1 is working, .

Pl W

9

In state (s,t), at least one of the components is working.

PRk D
S I
el N .

Remark: For the above to be applicable we are assuming that:

a) inspection of a component is destructive (for otherwise, one would 1

e

continue to use a working component rather than replace it), ]

e e e e e e e LT e e e et e m L e e et e e et N a1t oat A M Al " a® o e tEmT et M ot e ® e E et aren e -



F"""T"v_" 1 T e e ~ Rt e S
-

L

. 'e
-..‘ .
-
s
E . B
4
E-".
NI
. ~‘
'.‘

2
t b) inspection is informative in the sense that it tells us whether or

F -
1 not the component was functioning immediately before inspection. -
, Let w (s,t) denote the expected life of the system when, initially, J

the state is (s,t), n spares are available, and an optimal replacement . ;

schedule 18 used.

Special Case: Assume (s,t) = (0,0) and n = 1, and assume that

component 1 is optimally replaced at time Zl. Then

Z k

% (0,0) = mex {2 [ ve Y(1-eY)dy + e 2%z + 3/2) + (1-e2)e2(z + 3/2) ;
0
-z -z i
+ e (1 - e )(Z + 1)}
z, . _ 2, .2z, 1
= 2 f ye y(l - e y)cly + (5/2 + Zl)e - (1 + Zl)e .

0

It is seen, in a straight forward manner, that

z
e Lauy2

or

Z1 = log 2 ,

from which it follows that

wl(O, 0) = 13/8 .

The Case of n > 1.

When n > 1, the problem of obtaining an optimal component replace-

ment schedule appears to be difficult to solve. For the purpose of, at

-30-

DRI A T R PR P R S T ..
O A N T P R R - .
P . S . . T, i T O S o



A o= A A g
’.

......

it T
.

T -
T ]
< BRI

least, achieving lower bounds on what could be accomplished by an optimal
schedule, we restrict ourselves to a subclass of schedules for which the

analysis is feasible,

L]

We assume, initially, that (s,t) = (0,0) and consider schedules of

WA

'
b
N

the following form: when =n > 2, at time ;n’ component 1 is replaced and

PR T A T r". : L
e v ot e T L e
e e e e e B PR

then inspected. If the inspection reveals that the component was working,

3
A.

then component 2 is also replaced. If the inspection shows that the

oA

e

v
-

component was not working, then component 2 is left intact., When n =],

.

component 1 is replaced at time Zl. :

The rationale for the type of rule is based on the exponential life ﬁu

" an

distribution of the components, the parallel structure of the system, and ;i
mathematical convenience. If, when the system is working, one component ‘J
is not functioning, then the other must be, and, since it is working it .4
must be, statistically speaking, equivalent to a new component. Both com- R
ponents are replaced when the one inspected is functioning so that the
state is always (0,0) after a scheduled replacement, However, the ;}

double replacement is not completely inefficient, for if the one inspected

is working there is an enhanced possibility (depending, of course, on
x) that the other will have failed.

Let ;; denote the maximal life of the system when n spare com-
ponents are available and the class of schedules is restricted to the

above stated class. Then ;n satisfies

-3]1-
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;-max{'n(x)} , n>2
x o -

v, = w,(0,0)
= 13/8 ,

v, =3/2 ,

where, for n > 2,

X
(1) n(x) =2 J te T(1 - e T)de

+(1-(1-e-x)2){x+-u2:x—]£; +L v }

1_(1_e'8)2 n-1 (1_(1_e'X) 2) n-2

X

Rl T (R T (R (R & N (R A
+e*y .

n-2

The derivative of rh(x) is

n =e Moy - DeF+2-v _ -v L} .

By inspecting nt'l(x) it 1s clear that

L]
Y L
ALY 3 CR IR
lelada 2N L ool
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x =logs—>— , n<2 .
n +v_ =2 -
vn-l n-2

If n=1, then ;i -x - log 2.

On Substituting x in (11) we get, after some calculations, that

~ ~ 2
- (v._,+v__ =2)
v =ifs4_ml n2 "4 5,
n 2 ~ =
2v -1
n-1

To calculate ;;, the expected mumber of spare components used in the

life of the system, we have

~

LR
t

~

X
~ ="ny ="n ~ -n
u - 1-e Te "+ u_dte @+ u._o) » n22 .

The formslas for %n’ ;n’ and ;n are recursive and are readily cal-
culated numerically. (See Table 3.) In comparing X Vo and u with
;;, ;; and G; it should be kept in mind that n, i{n the former case,

because the entire system is replaced is, in fact, twice the number of

components of the latter case.

. B
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7. The Option of Non-destructive Inspections

In Section 6 it was assumed, presumably due to destructive
inspections, that an inspection implied a replacement. Here we assume
that inspections are not destructive so that if a component is found to be
working, it is continued in use. Without assuming inspection costs,
continuous surveillance would be optimal leading to an expected system
life equal to E;l.+ 1. Instead of introducing inspection costs into the
model we shall derive formulas for computing the values of the charac-

teristics assuming the schedule derived in Section 6. In this way we can

f: compare destructive and non-destructive inspections with respect to a

- fixed schedule.
?? Let u; denote the expected number of replacements made during the
g 1ife of the system. Then
-
wte(1-e 2eo+e Tur 4287 H1-eT )
x x
1 -
w26 - b
1 ~
_2x1
l-e
=2/3 .
;; 2 -z;n -;n -;n
ut = (1-e") e0+e u; +2 "1-e "1+ un-l)

-34-
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pe o e (1 - e Mk )
uf = ———ZT 2e e 1+ un_l) .
1—e- xn

Let v: denote the expected life of the system. Then

va = 3/2

~ ~

x t _t _x o
v: =2 | D ore” (1 -e Jdt + (1 - (1 -e n)Z) X

0 n
2% x X
- *
+ e v: +2 "1-e V) vk, » D >1 .
i.e., for n> 1,
1 xn _t 2 _xn _xn
vke —=— [ [P (1-(1-e )Vt +2e "(1-e v}
n - n-1
an 0
l-e
S
- - *
'——I-T{%-Ze “+°2 *2 H1-e )vn-l} ’
_2x
1-2- °

Values of v: and n: can be recursively calculated and are tabulated in
Table 3.

Considering that n 1in Table 2 1is, in fact, twice the value of n
in Table 3, replacement of components rather than systems produces a
substantial gain in expected 1life for a given number of spare components.
On the other hand, in comparing the two parts of Table 3, non-destructive

rather than destructive inspection produces only a modest gain.

:
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Asymptotic Distribution of System Life

Let I’n(t) denote the probability that system life exceeds t when

n spares are available and an optimal replacement schedule is used. Let {
;n(t) denote the same probability when an optimal equal interval replace- :
ment schedule is used. When x* = y* = 0 and v = ¢ = 1/£(0) > 0, {1t —.-:}
' would seem that the limiting distribution as n + ® of system life should
be exponential with rate £(0). That this is true depends on the
following. ;4

Proposition 1ll: 2

(-]
] x, = limny == . -
Proof: In the cases where x* = y* > 0, the proposition is trivially .;
true. Also, since ;<
§ :
v £ x + 4
n =1 h| ’l
and
'bn < ny + 8 , 7.:1
the proposition is immediate when v = ¢ = ®. Thus, consider the 1
.4
remaining case where v = ¢ = 1/£(0) (» and x* = y* = 0. Since the ]
2
%je are indebted to D. R. Smith for some remarks which were very helpful q
N in establishing this proposition.
: -36-

-----
'''''''''''''''

.........
~~~~~~~~~~~~

B T S T e T T T
--------------
..........



FL Ve TR TA TN TR 00 o e e R R A A T TR T e T T e S T T T e

sequences {xn} and {yn} are non-increasing and because f 1is

continuous of x = 0, for any € > 0 there exists an N such that for

n>N

(12) F(x) < (£00) + e)x_, F(y ) < (£(0) + &)y, -

On iterating (5)

n~-1
Vo T Vo1 2_j31 F(xj)(vl-vo) , Y22 .

Since v € =, %E: (vn-vn_l) = 0 implying

@
I F(x,) =0 ,
=1
which, with (12), implies 2;_1 x; = ® From (7), with y =y, on

letting n + = one has that

lim F(y. ) =0 ,
n»>o n

which, with (12), implies lim ny = = .
ns D

We now have

Proposition 12: If x* = 0, then for every t > O,

1im P (t) = lim P (t)
nde 0N n+o N

e B0 e o) >0
2 =1 , 1if f(0) =0 .
-37-
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o :
;f Proof: Fix t. From Proposition 11, Z;;l xj = o, Hence, for every ?
- ]
: k there exists an N such that for n > N, Xg-k X, > t. Thus, since . ;‘
T the xn's are decreasing the component in use at time t or before is ]
5f‘ never older than X . Denote by rn(t), the failure rate function for the 3
systemn life. Then i-

1

min r(s) < r (1) < max r(s 0<t<t
oﬁsf.xk()_n()—()(‘( (8) , 0<T¢

Thus, using

e 1

ftr (t)dx
_ o -
P (t) = e . ;?
R
-t r -t mi r
Og:i{xk (s) i _sgxk (s)
e _<_Pn(t)$e , *k and n>N .

Letting n + » and then k + «® and since X + 0, we have the value for

lim P (t). The value for lim P (t) 1s proved similarly.
n+ 0 nse N

............................
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9. A Multi-Failure Generalization

Let us now suppose that it takes 1 (1 > 1) vital component failures
to cause a system failure. Component replacement occurs at a component
failure or when scheduled. In previous sections 1 = 1. As before we
suppose there are n, n > i-1, spares and we let v(n,i) denote the
expected life of the system under an optimal schedule when the system
fails at the moment of the 1th vital component failure and n spares

are available. Then v(n,i) satisfies the optimality equation

X
v(n,i) = max {/ F(t)dt + F(x)v(n-1,1) + F(x)v(n-1,1-1)},n > 1,1 > 1,
0Kx<T - -

v(i-1,1) = 14 (Replacement only occurs at component failures when

n= i-lc) s

v(n, ) =0 , n>0 .

Let us denote by x(n, 1) the largest value that maximizes the above ex—
pression within brackets. The following proposition whose proof by induc-
tionon k 1 + n will not be given as it is almost identical with the

proof of Lemma 3 of [1].

Proposition 13:

(a) vin+ 1,1+ 1) =-v(n+1, 1) > v(n, 1 + 1) = v(n, 1)
(b) v(n+1, 1) - v(n, 1) 2 vin+ 2, 1) = v(n + 1, 1)
(c¢) v(n,1+1) - v(n,1) > v(n,i+2) - v(n,i+l) .

From the lemma of Section 3 and the above proposition we have the

following.
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Corollary: x(n,i) 1s decreasing in n and increasing in {.
In addition, it follows analogous to the results of Section 2 that
x(n, 1) = T whenever F 1is NWUE and

1
v(n-1,1)-v(n-1,i-1)

r(x(n,i) = n2>41i1 , 1>1 .
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10. Further Remarks

Proposition 3 and 13(b) are relevant to the question of how many
spare parts should be stocked. The propositions assert that the
incremental gain in expected life is decreasing in n. Thus, 1if the
reward associated with a unit of expected life can be compared to the cost
of a spare, there is a determinable N such that it i{s not economically
efficient to shock n > N spares. Although it seems a reasonable
conjecture, we have not been able to show that ¢n - ¢n-1 + in n.

Suppose, instead of maximizing expected life, it is more relevant to
maximize the probability that the system survives t units of time.

Then, in the case of 1 = 1, if the intervals between scheduled replace-

ments of n spares is {zn, z ceey zl}, then

n-1’

N .
P{L > t} = 1§0F(zi) ,

where
n
(13) 12021'1: , 2,20,1=0, cec,m

presuming it is always optimal to schedule the use of all spares.
Maximizing P{L > t} subject to (13) is equivalent to maximizing

ZI-O log i(zi) subject to (13), a classical allocation of resources

problem. If F 1is IFR, then log i(z) is concave and it is well-known

that the optimal values of 2y +ees T aTE equal; i.e., z. = t/nt+l,

k
k=1, ..., n. If F 4is DFR then 1log i(z) is convex and an optimal

schedule is to have z = t, z2 =0, k=1, ..., n-l.

k

A

P

)
X
.
3
®)]




......................
............
A N e e T s e e e T e e e e

« . .
.....
. o

TABLE 1. UNIFORM (0,1) DISTRIBUTION
n v X u ']
0 «5000  -==—- .0000 5000
1 .6250 .5000 5000 .6250
2 .6953 3750 .9375 .6924
. 3 . 7417 .3046 1.3471 7362
£y 4 «7750 .2582 1.7409 .7674
. 5 . 8003 2249 2.1244 .7911
3 6 .8203 .1996 2.5007 .8098
- 7 .8364 <1796 2.8716 .8250
L 8 .8498 .1635 3.2384 .8377
- 9 .8610 .1501 3.6019 .8484
. 10 .8707 .1389 3.9627 8576
- 11 .8790 «1292 4.3212 .8656
T4 12 .8864 .1209 4.6779 .8727
13 .8928 .1135 5.0329 .8789
14 .8985 .1071 5.3865 .8845
15 .9037 .1014 5.7389 .8896
16 .9083 .0962 6.0902 .8942
17 9125 .0916 6.4405 .8983
18 .9163 .0874 6.7900 .9022
19 .9198 .0836 7.1387 . 9057
20 .9230 .0801 7.4867 .9089
30 9449 .0566 10,9384 .9315
40 .9570 .0438 14,3581 « 9445
50 .9647 .0358 17.7597 «9531
60 .9701 .0303 21.1494 . 9592
70 9740 .0262 24,5309 9638
80 .9770 .0231 27.9062 .9674
90 .9794 .0207 31.2767 9703
100 .9813 .0187 34.6435 9727
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u TABLE 2.  f£(t) = 2¢ t(1-8%)

i n v x

e,
0 1.5000 @ —m—ee .0000
1 1.7500 1.0986 .7500
2 1.9500 .8472 1.
3 2.1224 L7191 2.
4 2.2765 .6370 2.
5 2.4172 .5785 3.
6 2.5476 .5339 4.
7 2.6697 .4984 4.
8 2.7849 .4693 5,
9 2.8943 .4448 6.
10 2.9987 .4238 6.
11 3.0988 .4056 7.
12 3.1950 .3896  8.3507
13 3.2877 .3754 9.
14 3.3774 .3626 9.7063
15 3.4643 .3510 10.
16 3.5486 .3405 11.
17 3.6306 .3310 11.7348
18 3,7105 .3221 12.4100
19 3.7883 .3140 13.0847
20 3.8644 .3064 13,7591
30 4.5454 .2524 20.4878
40 5.1259 .2196 27.1994
50 5.6406 .1970 33.9015
60 6.1078 .1802 40,5972
70 6.5387 L1671 47.2887
80 6.9407 .1565 53.9769
90 7.3188 .1477 60.6626
100 7.6770 .1402 67.3464
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- TABELE 3. ]
: =
n ; v :l' V* u* ¢ ,,‘H
A
"_?3'.
0 @ - 1.5000 .0000 1.5000 —-—--- ;;
1 .6931 1.6250 .7500 11,8333 .6666
2 .6931 1.7812 1.4375 1.9166 1.1666
3 .6000 1.8858 2,1127 2,0536 1.7273
4 .5083 2.0013 2.8136 2.1654 2.3381
5 .4644 2.0930 3.4753  2,2729  2.9437 ]
6 .4195 2,1883 4.1723 2.3670 3.5500 iof
7 .3921 2.2707 4.8328 2.4583 4.1710 -
8 .3647 2.3537 5.5237 2.5415 4.7807 o
9 .3454 2.4289 6.1858 2.6222 5.4079 R
10 .3266 2.5035 6.8714 2,6975 6.0224 o
11 .3122 2.5730 7.5353 2,7707 6.6524 e
12 .2983 2.6415 8.2169 2.8401 7.2715 T2
13 .2869 2.7062 8.8822 2.9075 7.9033 =
14 .2761  2.7699 9.5607 2.9721 8.5263 i
15 .2669 2.8309 10.2272 3.0351 9.1594 %
16 .2582 2.8907 10.9033 33,0958 9.7856 i
17 .2505 2.9483 11.5706 3.1550 10.4197 L
18 .2433  3.0049 12.2450 3,2124 11.0486 Eg
19 .2368 3.0597 12.9128 3.2685 11.6837 ]
20 .2307 3.1135 13,5859 3.3231 12.3149 o
30 .1878 3.5950 20.2823 3.8116 18.6817 '
40 .1623 4.0056 26.9702 4.2266 25.0900
50 .1449 4.3699 33.6533 4,5938 31.5261
60 .1321  4.7005 40.3332 4,9267 37.9823
70 L1221  5.0055 47.0109 5.2334 44.4542
80 .1141 5.2900 53.6870 5.5193 50.9386
90 .1075 5.5577 60.3619 5.7881 57.4334

100 .1019 5.8112 67.0359 6.0426 53.9370
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